首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510697篇
  免费   63363篇
  国内免费   41083篇
电工技术   37936篇
技术理论   45篇
综合类   48058篇
化学工业   73641篇
金属工艺   20719篇
机械仪表   30097篇
建筑科学   46750篇
矿业工程   17404篇
能源动力   14691篇
轻工业   35524篇
水利工程   15169篇
石油天然气   18150篇
武器工业   6527篇
无线电   62484篇
一般工业技术   45536篇
冶金工业   19521篇
原子能技术   4975篇
自动化技术   117916篇
  2024年   1128篇
  2023年   7473篇
  2022年   13594篇
  2021年   19043篇
  2020年   17096篇
  2019年   14280篇
  2018年   13563篇
  2017年   17854篇
  2016年   21238篇
  2015年   24112篇
  2014年   32753篇
  2013年   33473篇
  2012年   38225篇
  2011年   41259篇
  2010年   30990篇
  2009年   31229篇
  2008年   31594篇
  2007年   37044篇
  2006年   34514篇
  2005年   29931篇
  2004年   24501篇
  2003年   20501篇
  2002年   15806篇
  2001年   12280篇
  2000年   9884篇
  1999年   7878篇
  1998年   5912篇
  1997年   4908篇
  1996年   4114篇
  1995年   3560篇
  1994年   3025篇
  1993年   2287篇
  1992年   1861篇
  1991年   1412篇
  1990年   1218篇
  1989年   1035篇
  1988年   686篇
  1987年   482篇
  1986年   451篇
  1985年   524篇
  1984年   458篇
  1983年   345篇
  1982年   312篇
  1981年   215篇
  1980年   224篇
  1979年   91篇
  1977年   59篇
  1964年   65篇
  1962年   73篇
  1959年   59篇
排序方式: 共有10000条查询结果,搜索用时 138 毫秒
991.
The recent trend of aging population, not to mention the unprecedented pandemic, draws great attention from the general public about health concerns. Since healthcare information technology is different from non-healthcare information technology, additional contexts should be properly incorporated into technology acceptance research to accurately identify influential factors affecting the acceptance of wearable healthcare technology. Thus, we selectively reconfigured factors from health, privacy, and socio-demographic contexts to formulate a health-aware acceptance model. Then, it was empirically analyzed using structural equation modeling. Based on the results, whereas privacy concerns were directly associated with intention to use wearable healthcare technology, health concerns were not. Moreover, age had a moderating effect on social influence and facilitating conditions. These findings suggest valuable insights that the adoption rate of healthcare technology is increased by 1) keeping personal information securely, 2) facilitating social interaction among users, and 3) offering intuitive user experience for elderly people.  相似文献   
992.
993.
Numerous cells grow in columnar tissues and organs with different curvatures and curvature gradients. Therefore, it is necessary to study the effect of curvature on cell behavior to control and promote cell development. Herein, we prepared polydimethylsiloxane (PDMS) with different micro-nano patterns using ultraviolet soft lithography. Hydrophilic polydopamine (PDA) was modified on the PDMS surface to prepare PDMS/PDA to improve its biocompatibility. The PDMS/PDA was characterized by contact angle tester and scanning electron microscopy (SEM). The effect of curvature on bone cell migration and differentiation was studied through SEM, inverted phase contrast microscope and fluorescence microscopy. We found that different curvatures had different effects on the bone cell migration and differentiation. Chondrocytes migrated rapidly in grooves with a curvature range of 1/575–1/875 μm−1. Bone mesenchymal stem cells (BMSCs) had high efficiency of differentiation into chondrocytes in the grooves with a curvature range of 1/775–1/1375 μm−1. Furthermore, BMSCs showed high efficiency of differentiation into chondrocytes at the edges of micro-nano patterns with different perimeter curvatures, and the differentiation efficiency was the highest at 120° convex curvature. This work shows that curvature is a principle to be considered in bone tissue regeneration engineering and provides inspiration for future biomaterials design.  相似文献   
994.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
995.
KH550, KH560, CTAB, and F127 were adopted to modify silicon (Si) to improve the dispersity and stability of Si in the polyacrylonitrile/dimethyl sulfoxide (PAN/DMSO) polymer solutions. The influence of surfactants on rheological behaviors of PAN/DMSO/Si blending polymer solutions was investigated by an advanced solution and melt rotation rheometer. The homogeneity and stability were also studied. The results showed that the surfactants could change the viscosity dependence of blending polymer solutions on shear rate, temperature and storage time by increase the steric hindrance of Si. Among the four solutions, PAN/DMSO/Si blending polymer solution with F127 exhibited the lowest viscosity, activation energy and the smallest structural viscosity index and exhibited the trend close to the Newtonian fluids. Moreover, PAN/DMSO/Si blending polymer solution with F127 exhibited the best dispersity and stability, indicating its best physical properties and machinability.  相似文献   
996.
Green chemistry and green engineering concepts have been combined to develop novel sustainable polymeric materials. Solvent free photocurable acrylate resins with biorenewable carbon content of 75%–82% suitable for application in DLP 3D printing technology were composed by commercially available bio-based materials, acrylated epoxidized soybean oil (AESO), isobornyl methacrylate (IBOMA), methacrylic ester (ME), tetrahydrofurfuryl acrylate (THFA), and tetrahydrofurfuryl methacrylate (THFMA). They demonstrated high printing accuracy and good adhesion between layers. The monitoring of photocross-linking kinetics of high biorenewable content acrylate photoresins by the real-time photorheometry and analysis of their rheological parameters was carried out. Synthesized polymers exhibited high yield of insoluble fraction and thermal decomposition temperature at the weight loss of 10% above 300°C. Polymers AESO/IBOMA and AESO/THFMA showed the highest values of tensile modulus and tensile strength. Biodegradability of the synthesized polymers AESO/ME, AESO/THFA, and AESO/THFMA was investigated by measuring oxygen consumption in a closed respirometer. Such AESO-based polymers can be a competitive solution to replace petroleum-derived polymeric materials in additive manufacturing and reduce the environmental impact.  相似文献   
997.
Environmental concerns continue to pose the challenge to replace petroleum-based products with renewable ones completely or at least partially while maintaining comparable properties. Herein, rigid polyurethane (PU) foams were prepared using soy-based polyol for structural and thermal insulation applications. Cell size, density, thermal resistivity, and compression force deflection (CFD) values were evaluated and compared with that of petroleum-based PU foam Baydur 683. The roles of different additives, that is, catalyst, blowing agent, surfactants, and different functionalities of polyol on the properties of fabricated foam were also investigated. For this study, dibutyltin dilaurate was employed as catalyst and water as environment friendly blowing agent. Their competitive effect on density and cell size of the PU foams were evaluated. Five different silicone-based surfactants were employed to study the effect of surface tension on cell size of foam. It was also found that 5 g of surfactant per 100 g of polyol produced a foam with minimum surface tension and highest thermal resistivity (R value: 26.11 m2·K/W). However, CFD values were compromised for higher surfactant loading. Additionally, blending of 5 g of higher functionality soy-based polyol improved the CFD values to 328.19 kPa, which was comparable to that of petroleum-based foam Baydur 683.  相似文献   
998.
In the present work, the free radical polymerization of styrene is modeled by considering the phenomenology of the process (a simplified model, which does not include the diffusional effects, gel, and glass effects) in combination with an empirical model represented by an artificial neural network. Differential evolution (DE) algorithm, belonging to the class of evolutionary algorithms, is applied for developing the neural models in optimal forms. For improving the results—predicted conversion and molecular weights as function of time, temperature, and initiator concentration—different combinations between phenomenological model and neural network are tested; also, individual and stacked neural networks have been developed for the polymerization process. This methodology based on hybrid models, including neural networks aggregated in stacks, provides accurate results.  相似文献   
999.
《Ceramics International》2021,47(20):28603-28613
Foam glass is a lightweight and high-strength building and decoration material with superior performance in heat insulation, sound absorption, moisture resistance and fire protection. The use of waste glass powder and fly ash to prepare foam glass is one of the most important ways to utilize solid waste as a resource. In this study, waste glass powder and fly ash were used as raw materials to prepare foam glass by a hydrothermal hot pressing–calcination method. The effects of fly ash content (0 wt%, 10 wt%, 20 wt%, 30 wt%), heating rate (1 °C/min, 3 °C/min, 5 °C/min, 8 °C/min, 10 °C/min) and calcination temperature (600 °C, 700 °C, 750 °C, 800 °C, 850 °C, 900 °C) on the microscopic morphology, density, compressive strength, porosity and other properties of the foam glass samples were studied. Their microstructure and morphology were analyzed by thermogravimetric analysis–mass spectrometry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. At a fly ash content of 10 wt%, the heating rate was 5 °C/min, the calcination temperature was 800 °C, the foam glass density was 0.3 g/cm3, the compressive strength was 1.65 MPa, the total porosity was 75.5%, and the effective thermal conductivity was 0.206 W/m·K. The effective thermal conductivity models of the composite materials were used to verify the experimental data. The relationship between the thermal conductivity of foam glass materials and the related influencing factors was investigated.  相似文献   
1000.
The advent of 2D nanostructured materials as advanced fillers for polymer matrix composites has opened the doors to a plethora of new industrial applications requiring both electric and thermal management. Unique properties, in fact, can arise from accurate selection and processing of 2D fillers and their matrix. Here, we report an innovative family of nanocomposite membranes based on polyurethane (PU) and graphene nanoplatelets (GNPs), designed to improve thermal comfort in functional textiles. GNP particles were thoroughly characterized (through Raman, atomic force microscopy, high-resolution TEM, scanning electron microscope), and showed high crystallinity (ID/IG = 0.127), low thickness (D50 < 6–8 layers), and high lateral dimensions (D50 ≈ 3 μm). When GNPs were loaded (up to 10% wt/wt) into the PU matrix, their homogeneous dispersion resulted in an increase of the in-plane thermal conductivity of composite membranes up to 471%. The thermal dissipation of membranes, alone or coupled with cotton fabric, was further evaluated by means of an ad hoc system designed to simulate a human forearm. The results obtained provide a new strategy for the preparation of membranes suitable for technical textiles, with improved thermal comfort.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号